Abstract

Structures, porosity of which have been modified, show special properties and functions that cannot be achieved by common conventional tools. A combination of the most suitable properties can be utilized in a particular application by controlling the composition of the porous structure. The article deals with the research of the influence of the volume ratio of the material on a behavior of the beam with the lightweight porous structure. For this research, the core inside the beam shell made of 1.431 steel was filled with a simple lattice structure with regular geometry. The beam was built-in on one side and loaded on the other. Using the finite element method, a static analysis of the beam was performed in the PTC Creo Simulate software, where the volume ratio of the material was controlled by the “struts” diameter, while the thickness of the beam shell remained constant. The analysis has shown that with an increasing volume ratio of the beam material, a stress value of the beam drops more sharply than a displacement value of the beam. The modal analysis of the beam was performed at the volume ratio 44.53%. Individual modes and obtained values of the natural frequencies were compared to the full-volume beam in order to evaluate the behavior of the lightweight beam under dynamic load. The results of the analysis have shown that the values of the natural frequencies of the lightweight beam are comparable to those of the solid beam and the deformation behavior of the both beams in the first six modes is similar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call