Abstract

In urban areas, shallow foundations are often placed along the ground surface above a sheet pile wall. In this research, the potential benefits of reinforcing the active zone behind a model sheet pile wall by using polypropylene fiber and cement kiln dust have been investigated experimentally and numerically. Tests were conducted by varying parameters including fiber ratio (RF), cement kiln dust (CKD) ratio, thickness of reinforced layer, footing location relative to the sheet pile wall and curing time of reinforced layer. Finite element computer code PLAXIS 2D foundation was used for numerical modeling. Close agreement between the experimental and numerical results was observed (maximum difference 14%). Experimental and numerical results clearly show that fiber insertion into the cemented soil causes an increase in ultimate bearing capacity of footing and significant reduction in the lateral deflection of the sheet pile wall. At higher fiber ratios (RF ≥ 0.75%), the bearing capacity ratio (BCR) increased by about 42% and the effect of CKD ratio on BCR is more pronounced. The addition of fibers changed the brittle behavior of cemented sand to a more ductile one. Critical values of reinforcing parameters for maximum reinforcing effects are established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.