Abstract

Accurately predicting stress-strain characteristics is crucial to ensuring the regulated capacity and controlled deformation of the tubes during and after construction. However, research on the shear strength of geotextile tubes under surcharge loading, especially after dewatering, is insufficient. This study proposes an analytical model with a Stress-State Boundary (SSB) and Yield Function to comprehensively describe the stress-strain behavior of Load-Bearing Geotextile Tubes (LGTs). The SSB is designed to predict the initial state of stress in the infill soil prior to load application, while the Yield Function is formulated to express the shear stress path experienced by the LGT before fabric failure. The model considers various factors that affect LGT behavior, including diverse soil mechanical parameters, nonlinear fabric stiffness, initial tension due to self-weight and principal stress axes rotation. Results show that a decrease in Poisson's ratio corresponds to an increase in failure stress. Moreover, it was demonstrated that the axial failure strain can be influenced by the geotextile linear or nonlinear behavior. Notably, the study highlights that tube height and inclination angle significantly affect the geotextile's confining effect. Beyond theoretical contributions, the analytical model serves as a valuable tool for optimizing geotextile tube design and execution, contributing to project success and longevity through enhanced structural stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.