Abstract

An approach to estimate the behavior of stiffened rafts under column loads of a lightweight-reinforced concrete structure resting on expansive soils is presented in this paper. The analysis was conducted using the computer program SLAB97, which estimates the 3D distorted mound shape using the finite difference method by solving the transient suction diffusion equation in 3D and computing the corresponding soil movements. The interaction between the stiffened rafts and the 3D distorted mound shape is then analyzed using the finite element method. The SLAB97 program has been validated by comparing its results with the results of others that were shown to be valid. The goal of the study is to make the expansive soil structure interaction models that the previous researchers proposed more logical. Assuming the worst initial 3D distorted mound shapes of the two cases of edge heave and edge shrinkage, an upper-bound solution is obtained. Using the two scenarios of edge shrinkage and edge heave, the program was utilized in a parametric investigation to examine the impact of various parameters on the behavior of stiffened rafts on expansive soils. These parameters include the stiffening beam depth, the maximum differential movement of the distortion mound shape, and the raft dimensions. The behavior of the stiffened rafts subjected to concentrated column loads is concluded to be similar to that of the stiffened rafts subjected to uniform and perimeter line loads in both cases of distortion modes, with regard to the shape of raft deformation and distribution of the bending moments; however, the values of the design parameters such as maximum deflection, maximum differential deflection, and maximum moments are entirely different in these two situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call