Abstract

Lightweight structures built on expansive soils are susceptible to damage caused by soil movement. Financial losses resulting from the improper design of structures on expansive soils can be significant. The interactions and failure mechanisms of different geotechnical structures constructed on such soils differ depending on the structure type, site characteristics, and climatic conditions, as the behaviour of expansive soils is influenced by moisture variations. Therefore, the performance of different geotechnical structures (e.g., lightweight footings for residential buildings) is expected to be adversely affected by climate change (especially rainfall and temperature change), as geotechnical structures are often designed to have a service life of 50–100 years. Some structures may even fail if the effect of climate change is not considered in the present design. This review aims to provide insights into problems associated with expansive soils that trigger the failure of lightweight structures, including current investigations and industry practices. This review recognises that although the soil moisture conditions govern expansive soil behaviour, limited studies have incorporated the effect of future climate changes. In addition, this review identifies the need to improve the current Australian design practice for residential footings through the inclusion of more site-specific investigations and expected climate changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call