Abstract

We study the behavior of shell effects, like pairing correlations and shape deformations, with the excitation energy in atomic nuclei. The analysis is carried out with the finite temperature Hartree-Fock-Bogoliubov method and a finite range density dependent force. For the first time, properties associated with the octupole and hexadecupole deformation and with the superdeformation as a function of the excitation energy are studied. Calculations for the well quadrupole deformed 164Er and 162Dy, superdeformed 152Dy, octupole deformed 224Ra, and spherical 118Sn nuclei are shown. We find, in particular, the level density of superdeformed states to be 4 orders of magnitude smaller than for normal deformed ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.