Abstract
The structural evolution of hypereutectoid U10 steel with a pearlitic structure of various types (fine lamellar or partly spheroidized pearlite) is studied during fatigue loading. The fracture of these structures is considered using fractography data. The specific features of the structural transformations and the changes in the dislocation structure of the U10 steel are revealed during cyclic tension in the high-cycle fatigue region at a significant distance (10 mm) from a fatigue fracture surface. Substantial structural changes are shown to occur in U10 steel with various pearlitic structures during high-cycle fatigue tests (tension at a stress amplitude in a cycle lower than the macroscopic yield strength). These are the fragmentation, partial dissolution, and spheroidization of cementite lamellae and the polygonization of the ferrite component. The relationship between the type of fracture surface and the type of structure formed upon fatigue loading is found.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have