Abstract

This research focuses on studying the effects of soil movement on the behavior of an existing pile driven in sandy soil. A physical model has been manufactured to investigate the effect of construction of an embankment adjacent to free head single pile driven in sand of dry unit weight of 13.5 kN/m3. The model pile of diameter (D) of 10 mm are tested under two conditions of loading: loaded axially and without load. The model piles are instrumented with strain gauges along the embedded length to measure strains resulting from the soil movement. The embankment loads are applied at distances of 2.5, 5, and 10D from the edge of the pile. The results obtained from the model pile are: the lateral and vertical displacements at soil surface, the rotation at soil surface, bending moment profiles, pile deflection profiles, pile rotation profiles and shear force profiles. Some of these results are measured experimentally and others are calculated theoretically based on the measured strains. Based on the results of tests, it was found that the maximum soil reaction increased axially loaded piles by 43, 19, and 43%, when the embankment is at distances 2.5, 5, and 10D, respectively. The flexible pile provides more resistance to soil movement pressure and increasing the distance between the embankment and pile reduces the effects of embankment. The behavior of axially loaded pile is different than that of the pile without axial loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call