Abstract

The thermal degradation process of a commercial intumescent epoxy resin for fireproofing applications was investigated. The changes in the morphology of the material during exposure to fire-like conditions were interpreted in the light of the degradation of single material components and of the overall swelling mechanism. An apparent kinetic model was developed to describe the thermally activated conversion and the weight loss of the material. The dramatic change in the key properties of the material (thermal conductivity, volume swelling, and apparent density) was investigated and linked with the thermal degradation phenomena governing the swelling process. Models were developed to describe material properties as a function of temperature and material conversion. The models provide the simulation of the fire-triggered degradation of the sample material at the heating rates of interest, allowing a detailed analysis of fireproofing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.