Abstract

AbstractGyro‐remanent magnetization (GRM) is a frequently occurring yet unwanted remanence contamination for certain samples during alternating field (AF) demagnetization of the natural remanent magnetization. The origin and detailed properties of GRM have not yet been fully understood. In this study, systematic rock magnetic analyses were conducted on marine greigite‐bearing samples of Hole U1433A drilled by the IODP Expedition 349 from the South China Sea. Results show that GRM is mostly acquired above ~55 mT AF demagnetization and can be effectively removed by heating to ~400°C during thermal demagnetization but a secondary tail could remain until ~585°C. In addition, no apparent GRM was observed during the AF demagnetization for the 400°C thermally treated samples. These results strongly suggest that GRM is dominantly carried by single domain (SD) greigite but with minor contributions from SD magnetite. Thus, thermal treatment alone or the hybrid demagnetization (i.e., thermal demagnetization at ~400°C first then systematical AF demagnetization) can efficiently avoid the GRM acquisition and be beneficial for relative paleointensity estimation for greigite‐bearing samples. Besides, GRM carried by greigite has a low thermal stability. Our results also show AF demagnetization spectra of anhysteretic remanent magnetization (ARM) could be strongly distorted by GRM effects due to both have a preference of SD particles. Thus, the median destructive field of ARM is improper to be used as a coercivity proxy for greigite‐bearing samples. Instead, the biplot analysis of AF demagnetization of natural remanent magnetization and ARM can be used to evaluate the relative content of greigite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call