Abstract
Graphite is extensively used in large tokamaks today. In these machines the material is exposed to vacuum, to intense heat loads, and to the edge plasma. The use of graphite in such machines, therefore, depends on the outgassing behavior, the heat shock resistance, and thermochemical properties in a hydrogen plasma. Investigations of these properties made at different laboratories are described here. Experiments conducted at Sandia National Laboratories (SNL), Livermore, and the Max-Planck-Institut für Plasmaphysik (IPP) in Garching showed that the outgassing behavior of fine-grain reactor-grade graphite and carbon fiber composites depends on the pretreatment (manufacturing and/or storage). However, after proper outgassing the samples tested behave similarly in the case of fine-grain graphite, but the outgassing remains high for the carbon fiber composites. Heat shock tests have been made with the Electron Beam Test System (EBTS) at SNL, Albuquerque. Directly cooled graphite samples (FE 159 graphite brazed onto Mo tubes) showed no failure at a heat load of 700 W/cm 2, 20 s; or 10 kW, 1 s. Thermal erosion due to sublimination and particle emission from the graphite surface was observed. This effect is related to the surface temperature and becomes significant at temperatures above 2500°K. Fourteen different types of graphite were tested; the main differences among these samples were the different surface temperatures obtained under the same heating conditions. Cracking due to heat shocks was observed in some of the samples, but none of the carbon fiber composites failed. Thermochemical properties have been tested in the PISCES plasma generator at UCLA for ion energies of around 100 eV. The formation of C-H compounds was observed spectroscopically at sample temperatures of around 600°C. However, this chemical reaction did not lead to erosion as observed in beam experiments but to a drastic change of the surface structure due to redeposition. Carbon-hydrogen lines were still observed at sample temperatures of around 100°C. Under these conditions the erosion yield is high and in agreement with those measured in beam experiments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have