Abstract

The paper investigated the use of fiberglass-reinforced plastic (FRP) grid for reinforcement in link slabs for jointless bridge decks. The design concept of link slab was examined based on the ductility of the fiberglass-reinforced plastic grid to accommodate bridge deck deformations. The implementation of hybrid simulation assisted in combining the experimental results and the theoretical work. The numerical analyses and the experimental work investigated the behavior of the link slab and confirmed its feasibility. The results indicated that the technique would allow simultaneous achievement of structural need, lower flexural stiffness of the link slab approaching the behavior of a hinge, and sustainability need of the link slab. The outcome of the study supports the contention that jointless concrete bridge decks may be designed and constructed with fiberglass-reinforced plastic grid link slabs. This concept would also provide a solution to a number of deterioration problems associated with bridge deck joints and can be used during new construction of bridge decks. The federal highway administration provided funds to Louisiana Department of Transportation through the innovative bridge research and development program to implement the use of FRP grid as link slab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.