Abstract

Owing to the global warming and its strong adaptability, Cylindrospermopsis raciborskii has spread world-wide. However, as one of toxic cyanobacteria in many drinking water sources, it has not been drawn proper consideration in drinking water treatment plants so far. The investigation aimed at unveiling the fate of C. raciborskii during polyaluminum ferric chloride (PAFC) coagulation and sludge storage, revealing its differences from Microcystis aeruginosa. Results showed that C. raciborskii cells were effectively removed intactly under optimum coagulation conditions, but PAFC at higher dosages (>10 mg/L) triggered additional cylindrospermopsins release. In sludge storage, coagulated C. raciborskii cells suffered severe oxidative damage, leading to significant cylindrospermopsins release after day 6. C. raciborskii manifested different behaviors from M. aeruginosa which cells didn’t release much microcystins during coagulation and sludge storage. This was mostly due to their differences in physiology and morphology. In flocs, M. aeruginosa could be enveloped by coagulant which can protect cells against the nasty attack from outside, whereas C. raciborskii with long filaments was hard to be wrapped and prone to suffering oxidative damage. These results confirmed C. raciborskii had a higher risk of toxin release in water production process than M. aeruginosa, which should deserve more attention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.