Abstract

The behavior of braced excavation in dry sand under a seismic condition is investigated in this paper. A series of shake table tests on a reduced scale model of a retaining wall with one level of bracing were conducted to study the effect of different design parameters such as excavation depth, acceleration amplitude and wall stiffness. Numerical analyses using FLAC 2D were also performed considering one level of bracing. The strut forces, lateral displacements and bending moments in the wall at the end of earthquake motion were compared with experimental results. The study showed that in a post-seismic condition, when other factors were constant, lateral displacement, bending moment, strut forces and maximum ground surface displacement increased with excavation depth and the amplitude of base acceleration. The study also showed that as wall stiffness decreased, the lateral displacement of the wall and ground surface displacement increased, but the bending moment of the wall and strut forces decreased. The net earth pressure behind the walls was influenced by excavation depth and the peak acceleration amplitude, but did not change significantly with wall stiffness. Strut force was the least affected parameter when compared with others under a seismic condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call