Abstract
The development of the non-ferrous metal industry is generating increasingly large quantities of wastewater containing heavy metals (e.g., Sb). The precipitation of heavy metals by microorganisms involves complex mechanisms that require further investigation to optimize bioremediation technologies. In this study, we employed a sulfate-reducing bacteria (SRB) strain Desulfovibrio desulfuricans CSU_dl to treat the antimony (Sb)-containing wastewater; the behavior of Sb and mechanisms underlying precipitation were investigated by characterizing the precipitates. The results showed that the abiotic factors constraining SRB bacterial growth greatly affect Sb forms and precipitation. For instance, Sb precipitation maximumly occurred at pH 6 and 7, or C:N ratio of 10:1 and 40:3 for Sb(III) and Sb(V), respectively, resulting in a maximum Sb removal rate of 94%. Interestingly, we found that substantial antimonate and antimonite were adsorbed on the SRB cell surface, indicating that cell surface is a critical reaction site of Sb transformation and precipitation. Sb was adsorbed to the cell surface by C-C and C=O groups, and was further precipitated by forming Sb2S3 and Sb2S5 or was coprecipitated with the P-containing group. Partial Sb(V) reduction was also observed on the SRB cell surface. These results provided a deep insight into the Sb bio-transformation and were an advancement with respect to understanding bioremediation of Sb-contaminated wastewater.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have