Abstract

The aim of this work was to determine the T2R4 bitter taste receptor-blocking ability of enzymatic beef protein hydrolysates and identified peptide sequences. Beef protein was hydrolyzed with each of six commercial enzymes (alcalase, chymotrypsin, trypsin, pepsin, flavourzyme, and thermoase). Electronic tongue measurements showed that the hydrolysates had significantly ( p < 0.05) lower bitter scores than quinine. Addition of the hydrolysates to quinine led to reduced bitterness intensity of quinine with trypsin and pepsin hydrolysates being the most effective. Addition of the hydrolysates to HEK293T cells that heterologously express one of the bitter taste receptors (T2R4) showed alcalase, thermoase, pepsin, and trypsin hydrolysates as the most effective in reducing calcium mobilization. Eight peptides that were identified from the alcalase and chymotrypsin hydrolysates also suppressed quinine-dependent calcium release from T2R4 with AGDDAPRAVF and ETSARHL being the most effective. We conclude that short peptide lengths or the presence of multiple serine residues may not be desirable structural requirements for blocking quinine-dependent T2R4 activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.