Abstract

Despite the many advantages of using active ultrasound sonars, recent studies have shown that the specific acoustic geometry, signal-processing configuration, and complex surface-volume scattering process at the riverbed introduce several uncertainties in bedload estimation. This study presents a comparison of bedload velocity and bottom echo intensity measurements performed by monostatic and bistatic active ultrasound systems. The monostatic configuration is widely applied in the field to measure the apparent velocity at the riverbed with an acoustic current Doppler profiler (ADCP). Two laboratory investigations were conducted in two different hydraulic facilities deploying ADCP Stream Pro, monostatic and bistatic acoustic velocity profilers, manufactured by Ubertone. The bistatic instruments provided more accurate bedload velocity measurements and helped in understanding the acoustic sampling of the monastic systems. The bistatic profiles succeeded in measuring a profile over the active bedload layer, and the monostatic instruments resulted in different bedload velocity estimations depending on the acoustic resolution and sampling. The echo intensity increased in the cells measured within the active bedload layer with respect to the cell measuring the water column above. The cells that sampled the immobile bed surface beneath the bedload layer showed a reduction of the echo intensity compared with the cells above. The acoustic sampling, which combines the measurement volume geometry and internal processing, seems crucial for more accurate outputs. Future research about the use of monostatic instruments in the field should aim to define the best possible setting for the acoustic parameters at a given bedload condition that may be tuned by evaluating the backscattering at the river bottom together with the apparent bedload velocity.

Highlights

  • Sediments transported by rolling, sliding, or saltating on the bottom of an aquatic environment are called bedload

  • The apparent bedload velocities and the echo intensities (EI). Measured both by the ADCP and the acoustic Doppler velocity profilers (ADVP) did not differ between Positions 1 and 2, which showed the spatial homogeneity of the bedload transport throughout the flume

  • This study showed that using monostatic and bistatic ultrasound systems in laboratory conditions is a promising technique to measure bedload velocity, one of the most important characteristics of bedload transport

Read more

Summary

Introduction

Sediments transported by rolling, sliding, or saltating on the bottom of an aquatic environment are called bedload. The topmost stratum of the streambed, which is partially mobile, is called the active bedload layer [1]. Quantifying the mass of bedload that moves within the active layer per unit time defines the bedload transport rate. Accurate estimation of bedload transport characteristics in a riverine environment is still an open problem in engineering. Measuring the transport rate and using direct conventional methods (i.e., bedload traps or samplers) is notoriously difficult and labor-intensive [2]. Bedload measurements are seldom available and sometimes considered statistically unreliable

Objectives
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.