Abstract
The most common types of induction rotating machine failures are the mechanical faults induced by misalignment, mechanical imbalance and bearing fault. It is well known that the vibration is the best and the earliest indicator of arising mechanical defect. Thus, this paper presents a novel practical bearing fault diagnosis method based on wavelet package decomposition (WPD) associated with neural network. Firstly, the raw signal is segmented by the use of WPD to a set of sub-signals (coefficients futures). Then, the energy related to the most sensible coefficients that contained the greatest dominant fault information is selected as a distinctive feature fault. The analysis results show that this fault indicator varies under different loads and states (healthy or defective). In order to automate the detection and the location of bearing defect, this feature can be used as an input to the artificial neural network. The proposed approach is capable of discriminating faults from four conditions of rolling bearing, the healthy bearing and the three different types of defected bearings: outer race, inner race, and ball. The experimental results prove the effectiveness of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of System Assurance Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.