Abstract
The presence of underground voids has an adverse influence on the performance of shallow foundations. In this study, the bearing capacity and failure mechanism of footings placed on cohesive-frictional soils with voids are evaluated using discontinuity layout optimization. By introducing a reduction coefficient, a set of design charts that can be directly applied to the classical bearing capacity formulation is presented. The results indicate that the undrained bearing capacity with voids is sensitive to soil weight and cohesion, as both the bearing capacity and stability issues exist in the problem. The failure mechanism is directly related to a variety of soil properties, the locations of single voids, and the horizontal distance between two voids. The presence of voids has a more dominant effect on c–φ soils compared to that on undrained soil. An interpretation of the critical and adverse locations for single-void and dual-void cases with various soil strengths is presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have