Abstract
Previous mmWave sensing solutions assumed good signal quality. Ensuring an unblocked or strengthened LoS path is challenging. Therefore, finding an NLoS path is crucial to enhancing perceived signal quality. This paper proposes Trebsen, a Transmitter-REceiver collaboration-based Beamforming scheme SENsing using commercial mmWave radars. Specifically, we define the hybrid beamforming problem as an optimization challenge involving beamforming angle search based on transmitter-receiver collaboration. We derive a comprehensive expression for parameter optimization by modeling the signal attenuation variations resulting from the propagation path. To comprehensively assess the perception signal quality, we design a novel metric perceived signal-to-interference-plus-noise ratio (PSINR), combining the carrier signal and baseband signal to quantify the fine-grained sensing motion signal quality. Considering the high time cost of traversing or randomly searching methods, we employ a search method based on deep reinforcement learning to quickly explore optimal beamforming angles at both transmitter and receiver. We implement Trebsen and evaluate its performance in a fine-grained sensing application (i.e., heartbeat). Experimental results show that Trebsen significantly enhances heartbeat sensing performance in blocked or misaligned LoS scenes. Comparing non-beamforming, Trebsen demonstrates a reduction of 23.6% in HR error and 27.47% in IBI error. Moreover, comparing random search, Trebsen exhibits a 90% increase in search speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.