Abstract
An accelerator-driven subcritical system (ADS) project was launched in China in 2011, aiming to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power. The driver linac is defined to be a 10 mA current of high energy protons at 1.5 GeV in continuous wave operation mode. To meet the extremely high power and intense beam accelerator requirements, non-interceptive monitors for the beam transverse profile are required for this proton linac. Taking advantage of the residual gas as active material, the Beam Induced Fluorescence (BIF) monitor exploits gas-excited fluorescence in the visible spectrum region for transverse profile measurements. The advantages of this non-intercepting method are that nothing is installed in the vacuum pipe, component design is compact and there is no need for expensive signal processing electronics. Beam experiments have been performed under constant beam conditions. The helium spectrum has been verified with different optical filters, showing that a proper optical band-pass filter covering 400–500 nm is necessary for fluorescence experiments with helium. By changing gas pressure, it is shown that gas pressure is proportional to the signal amplitude but has no influence on detected profile width. Finally, a comparison experiment between the BIF monitor and a wire scanner shows that the detected profile width results of both methods agree well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.