Abstract
Passive radar has drawn a lot of attention due to its applications across military and civilian sectors. Under this working paradigm, the utilization of antenna arrays is instrumental, as it increases the signal quality and enables precise target positioning. These promising features rely, however, on the precise calibration of the antenna array, as the different hardware components introduce impairments that compromise the beamforming capabilities of the system. We propose a technique that employs a low-power external beacon signal to produce precise information about the target location, avoiding the angular ambiguities present in other solutions in the literature. The experimental results demonstrate the method’s ability to effectively correct the amplitude and phase inconsistencies while compensating for frequency drifts, enabling beamforming capabilities and direction-of-arrival estimation. Among the tested beacon waveforms, the pseudo-random noise-based signals proved the most robust, especially in low-power scenarios. Additionally, the method was validated in a passive radar setup, where it successfully detected a vessel using opportunistic signals. These findings highlight the method’s potential to enhance passive radar performance while maintaining a low probability of detection, a key aspect in military applications, as well as its applicability to civilian purposes, such as infrastructure monitoring, environmental observation, and traffic management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have