Abstract

Neurotrophins, including brain-derived neurotrophic factor (BDNF), are expressed in the hippocampus, as well as their precursors, the pro-neurotrophins. The neurotrophins signal through specific tyrosine kinase receptors and the low affinity receptor p75NTR. Moreover, the pro-neurotrophins are considered to be biologically active by signaling through specific receptors. The neurotrophins, especially BDNF, are involved in processes related to learning and memory. Furthermore, it is thought that BDNF also plays a crucial role in major depression. This points to a role of BDNF as a central regulator of neuronal plasticity within the postnatal hippocampus. Morphological correlates of neuronal plasticity are changes on the level of the dendritic spines and, at least in the dentate gyrus of the hippocampus, on the level of adult neurogenesis. Specific changes in dendritic spines as well as in adult hippocampal neurogenesis can be seen in the context of several forms of learning and memory, and it is known that depression is accompanied by declines in the rate of adult neurogenesis and in spine densities. The possible roles of BDNF in neuronal plasticity within the hippocampus are highlighted in this review by focusing on the morphological components of neuronal plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.