Abstract

During the initial phase of myofibrillogenesis in developing muscle cells, the majority of thin filaments lie parallel to, and exhibit correct polarity and spatial position with thick filaments, as in mature myofibrils. Since myosin is known to function as an accelerator of actin polymerization in vitro, it has been postulated that myosin-actin interaction is important in the initial phase of myofibrillogenesis. To clarify further the role of actin-myosin interaction in myofibril formation during development, BDM (2, 3-butanedione 2-monoxime), an inhibitor of myosin ATPase, was applied to primary cultures of skeletal muscle to inhibit myosin activity during myofibrillogenesis, and myofibril formation was examined. When 10 mM BDM was added to the myotubes just after fusion and the cultures were maintained for a further 4 days, cross-striated myofibrils were scarcely observed by fluorescence microscopy when examined by staining with antibodies to actin, myosin, troponin and alpha-actinin, whereas in the control myotubes not exposed to BDM, typical sarcomeric structures were detected. Electron microscopy revealed a disorganized arrangement of myofilaments and incomplete sarcomeric structures in the BDM-treated myotubes. Thus, formation of cross-striated myofibrils was remarkably suppressed in the BDM-treated myotubes. When the myotubes cultured in BDM-containing media were transferred to control media, sarcomeric structures were formed in 2-3 days, suggesting that the inhibitory effect of BDM on myotubes is reversible. These results suggest that actin-myosin interaction plays a critical role in the early process of myofibrillogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call