Abstract

We investigate the ground state properties of a disordered superfluid Fermi gas across the BCS-BEC (Bose-Einstein condensate) crossover. We show that, for weak disorder, both the depletion of the condensate fraction of pairs and the normal fluid density exhibit a nonmonotonic behavior as a function of the interaction parameter 1/k{F}a, reaching their minimum value near unitarity. We find that, moving away from the weak-coupling BCS regime, Anderson's theorem ceases to apply and the superfluid order parameter is more and more affected by the random potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call