Abstract

The arrest of differentiation is a feature of both chronic myelogenous leukemia cells in myeloid blast crisis and myeloid precursors that ectopically express the p210BCR-ABL oncoprotein; however, its underlying mechanisms remain poorly understood. Here we show that expression of BCR-ABL in myeloid precursor cells leads to transcriptional suppression of the granulocyte colony-stimulating factor receptor G-CSF-R (encoded by CSF3R), possibly through down-modulation of C/EBPalpha-the principal regulator of granulocytic differentiation. Expression of C/EBPalpha protein is barely detectable in primary marrow cells taken from individuals affected with chronic myeloid leukemia in blast crisis. In contrast, CEBPA RNA is clearly present. Ectopic expression of C/EBPalpha induces granulocytic differentiation of myeloid precursor cells expressing BCR-ABL. Expression of C/EBPalpha is suppressed at the translational level by interaction of the poly(rC)-binding protein hnRNP E2 with CEBPA mRNA, and ectopic expression of hnRNP E2 in myeloid precursor cells down-regulates both C/EBPalpha and G-CSF-R and leads to rapid cell death on treatment with G-CSF (encoded by CSF3). Our results indicate that BCR-ABL regulates the expression of C/EBPalpha by inducing hnRNP E2-which inhibits the translation of CEBPA mRNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call