Abstract
After contusion-derived spinal cord injury, (SCI) there is localized tissue disruption and energy failure that results in early necrosis and delayed apoptosis, events that contribute to chronic central pain in a majority of patients. We assessed the extent of contusion-induced apoptosis of neurons in a known central pain-signaling pathway, the spinothalamic tract (STT), which may be a contributor to SCI-induced pain. We observed the loss of STT cells and localized increase of DNA fragmentation and cytoplasmic histone-DNA complexes, which suggested potential apoptotic changes among STT neurons after SCI. We also showed SCI-associated changes in the expression of the antiapoptotic protein Bcl-xL, especially among STT cells, consistent with the hypothesis that Bcl-xL regulates the extent of apoptosis after SCI. Apoptosis in the injured spinal cord correlated well with prompt decreases in Bcl-xL protein levels and Bcl-xL/Bax protein ratios at the contusion site. We interpret these results as evidence that regulation of Bcl-xL may play a role in neural sparing after spinal injury and pain-signaling function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.