Abstract
After contusion-derived spinal cord injury, (SCI) there is localized tissue disruption and energy failure that results in early necrosis and delayed apoptosis, events that contribute to chronic central pain in a majority of patients. We assessed the extent of contusion-induced apoptosis of neurons in a known central pain-signaling pathway, the spinothalamic tract (STT), which may be a contributor to SCI-induced pain. We observed the loss of STT cells and localized increase of DNA fragmentation and cytoplasmic histone-DNA complexes, which suggested potential apoptotic changes among STT neurons after SCI. We also showed SCI-associated changes in the expression of the antiapoptotic protein Bcl-xL, especially among STT cells, consistent with the hypothesis that Bcl-xL regulates the extent of apoptosis after SCI. Apoptosis in the injured spinal cord correlated well with prompt decreases in Bcl-xL protein levels and Bcl-xL/Bax protein ratios at the contusion site. We interpret these results as evidence that regulation of Bcl-xL may play a role in neural sparing after spinal injury and pain-signaling function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have