Abstract

During long-distance flight, unmanned aerial vehicles (UAVs) need to perform cross-domain authentication to prove their identity and receive information from the ground control station (GCS). However, the GCS needs to verify all drones arriving at the area it is responsible for, which leads to the GCS being unable to complete authentication in time when facing cross-domain requests from a large number of drones. Additionally, due to potential threats from attackers, drones and GCSs are likely to be deceived. To improve the efficiency and security of cross-domain authentication, we propose an efficient blockchain-based cross-domain authentication scheme for the Internet of Drones (BCDAIoD). By using a consortium chain with a multi-chain architecture, the proposed method can query and update different types of data efficiently. By mutual authentication before cross-domain authentication, drones can compose drone groups to lighten the authentication workload of domain management nodes. BCDAIoD uses the notification mechanism between domains to enable path planning for drones in advance, which can further improve the efficiency of cross-domain authentication. The performance of BCDAIoD was evaluated through experiments. The results show that the cross-domain authentication time cost and computational overhead of BCDAIoD are significantly lower those of than existing methods when the number of drones is large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call