Abstract
The purpose of this study is to determine the need and level of effort required to add existing atmospheric databases and infrasound propagation models to the DOE`s Hydroacoustic Coverage Assessment Model (HydroCAM) [1,2]. The rationale for the study is that the performance of the infrasound monitoring network will be an important factor for both the International Monitoring System (IMS) and US national monitoring capability. Many of the technical issues affecting the design and performance of the infrasound network are directly related to the variability of the atmosphere and the corresponding uncertainties in infrasound propagation. It is clear that the study of these issues will be enhanced by the availability of software tools for easy manipulation and interfacing of various atmospheric databases and infrasound propagation models. In addition, since there are many similarities between propagation in the oceans and in the atmosphere, it is anticipated that much of the software infrastructure developed for hydroacoustic database manipulation and propagation modeling in HydroCAM will be directly extendible to an infrasound capability. The study approach was to talk to the acknowledged domain experts in the infrasound monitoring area to determine: 1. The major technical issues affecting infrasound monitoring network performance. 2. The need for an atmospheric database/infrasound propagation modeling capability similar to HydroCAM. 3. The state of existing infrasound propagation codes and atmospheric databases. 4. A recommended approach for developing the required capabilities. A list of the people who contributed information to this study is provided in Table 1. We also relied on our knowledge of oceanographic and meteorological data sources to determine the availability of atmospheric databases and the feasibility of incorporating this information into the existing HydroCAM geographic database software. This report presents a summary of the need for an integrated infrasound modeling capability in Section 2.0. Section 3.0 provides a recommended approach for developing this capability in two stages; a basic capability and an extended capability. This section includes a discussion of the available static and dynamic databases, and the various modeling tools which are available or could be developed under such a task. The conclusions and recommendations of the study are provided in Section 4.0.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have