Abstract

Reasoning over knowledge graphs (KGs) has received increasing attention recently due to its promising applications in many areas, such as semantic search and recommendation systems. Subsequently, most reasoning models are inherently transductive and ignore uncertainties of KGs, making it difficult to generalize to unseen entities. Moreover, existing approaches usually require each entity in the KG to have sufficient training samples, which leads to the overfitting of the entity having few instances. In fact, long-tail distributions are quite widespread in KGs, and newly emerging entities will tend to have only a few related triples. In this work, we aim at studying knowledge graph reasoning under a challenging setting where only limited training samples are available. Specifically, we propose a Bayesian inductive reasoning method and incorporate meta-learning techniques in few-shot learning to solve data deficiency and uncertainties. We design a Bayesian graph neural network as a meta-learner to achieve Bayesian inference, which can extrapolate meta-knowledge from observed KG to emerging entities. We conduct extensive experiments on two large-scale benchmark datasets, and the results demonstrate considerable performance improvement with the proposed approach over other baselines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.