Abstract
Detecting signs of suicidal thoughts on social media is paramount for preventing suicides, given the platforms' role as primary outlets for emotional expression. Traditional embedding techniques focus solely on semantic analysis and lack the sentiment analysis essential for capturing emotions. This limitation poses challenges in developing high-accuracy models. Additionally, previous studies often rely on a single dataset, further constraining their effectiveness. To overcome these challenges, this study proposes an innovative approach that integrates embedding techniques such as BERT, which offers semantic and syntactic analysis of the posts, with sentiment analysis provided by VADER scores extracted from the VADER sentiment analysis tool. The identified features are then input into the proposed optimized hybrid deep learning model, specifically the Bi-GRU and Attention incorporated with Stacked or stacking Classifier (Decision Tree, Random Forest, Gradient Boost, as the base classifier and XGBoost as meta classifier), which undergoes optimization using the grid search technique to enhance detection capabilities. In evaluations, the model achieved an impressive accuracy and F1-score of 98% on the Reddit dataset and 97% on the Twitter dataset. The research evaluates the efficacy of several machine learning models, encompassing Decision Trees, Random Forests, Gradient Boosting, and XGBoost. Moreover, it examines sophisticated models like LSTM with Attention, Bi-LSTM with Attention, and Bi-GRU with Attention, augmented with word embeddings such as BERT, MUSE, and fastText, alongside the fusion of sentiment VADER score. These results emphasize the promise of a holistic strategy that combines advanced feature embedding techniques with semantic features, showcasing a notably efficient detection of suicidal ideation on social media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.