Abstract

We propose a simple Bayesian variable selection method in binary quantile regression. Our method computes the Bayes factors of all candidate models simultaneously based on a single set of MCMC samples from a model that encompasses all candidate models. The method deals with multicollinearity problems and variable selection under constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.