Abstract
In this paper, we construct a Bayesian hierarchical model with global-local shrinkage priors for the regression coefficients, which includes the horseshoe prior and normal-gamma prior. This model is used for high-dimensional quantile regression models with dichotomous response data. We have developed an efficient sampling algorithm to generate posterior samplings for making posterior inference. We use a location-scale mixture representation of the asymmetric Laplace distribution. We assess the performance of the proposed methods through Monte Carlo simulations and two real-data applications in terms of parameter estimation and variable selection. Numerical results demonstrate that the proposed methods perform comparably with existing Bayesian methods under a variety of scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.