Abstract

ABSTRACTMixture of linear mixed-effects models has received considerable attention in longitudinal studies, including medical research, social science and economics. The inferential question of interest is often the identification of critical factors that affect the responses. We consider a Bayesian approach to select the important fixed and random effects in the finite mixture of linear mixed-effects models. To accomplish our goal, latent variables are introduced to facilitate the identification of influential fixed and random components and to classify the membership of observations in the longitudinal data. A spike-and-slab prior for the regression coefficients is adopted to sidestep the potential complications of highly collinear covariates and to handle large p and small n issues in the variable selection problems. Here we employ Markov chain Monte Carlo (MCMC) sampling techniques for posterior inferences and explore the performance of the proposed method in simulation studies, followed by an actual psychiatric data analysis concerning depressive disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.