Abstract

In this paper, we consider theoretical and computational connections between six popular methods for variable subset selection in generalized linear models (GLM's). Under the conjugate priors developed by Chen and Ibrahim (2003) for the generalized linear model, we obtain closed form analytic relationships between the Bayes factor (posterior model probability), the Conditional Predictive Ordinate (CPO), the L measure, the Deviance Information Criterion (DIC), the Aikiake Information Criterion (AIC), and the Bayesian Information Criterion (BIC) in the case of the linear model. Moreover, we examine computational relationships in the model space for these Bayesian methods for an arbitrary GLM under conjugate priors as well as examine the performance of the conjugate priors of Chen and Ibrahim (2003) in Bayesian variable selection. Specifically, we show that once Markov chain Monte Carlo (MCMC) samples are obtained from the full model, the four Bayesian criteria can be simultaneously computed for all possible subset models in the model space. We illustrate our new methodology with a simulation study and a real dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.