Abstract

We consider in this paper simultaneous Bayesian variable selection and estimation for linear regression models with global-local shrinkage priors on the regression coefficients. We propose a variable selection procedure that selects a variable if the ratio of the posterior mean of its regression coefficient to the corresponding ordinary least square estimate is greater than a half. The regression coefficient is estimated by the posterior mean or zero depending on whether the corresponding variable is selected or not. Under the assumption of orthogonal designs, we prove that if the local parameters have polynomial-tailed priors, the proposed method enjoys the oracle property in the sense that it can achieve variable selection consistency and optimal estimation rate at the same time. However, if, instead, an exponential-tailed prior is used for the local parameters, the proposed method has variable selection consistency but not the optimal estimation rate. We show via simulation and real data examples that our proposed selection mechanism works for nonorthogonal designs as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.