Abstract

In sensorimotor control, sensory feedback integrates with forward models to alleviate the impacts of sensory noise and delay on state estimation. The sensorimotor integration is subject to Bayesian inference and has been formulated by the Kalman filter in computational neuroscience. However, the Kalman filter, as an artificial optimal estimator to address the abstract characteristics of spatial perception, is inadequate to present the neural computation in the cerebellum. Besides, the nonlinear neuromuscular dynamics with tightly coupled state variables also substantially impedes the implementation of Kalman filter in realistic sensorimotor systems. Here we address the sensorimotor state estimate by using the particle filter, a nonlinear Bayesian estimator that can be implemented in arbitrary dynamic systems with the neurocomputational compatibility. Particle filtering is explicitly implemented in a biophysically realistic sensorimotor model of an upper limb integrating Hill-type muscles, tendons, skeleton, and primary afferents. By involving the command noises, the constructed neuromusculoskeletal model qualitatively represents the experimental variability in center-out reaching movements. Despite the initial estimation uncertainty and sensorimotor noises, the particle filter is able to approximate the actual states in forward-reaching movements. Furthermore, the simulated hand-position estimate is consistent with the experimental results, in the presence of forward model errors, neural noises, and sensory delays. The particle filter is demonstrated to effectively implement the Bayesian state estimation in biophysically realistic sensorimotor systems and provide better compatibility with neuronal computation than the Kalman filter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call