Abstract

A reliability study based on a Bayesian semi-parametric framework is performed in order to explore the impact of the position of a locomotive wheel on its service lifetime and to predict its other reliability characteristics. A piecewise constant hazard regression model is used to analyse the lifetime of locomotive wheels using degradation data and taking into account the bogie on which the wheel is located. Gamma frailties are included in this study to explore unobserved covariates within the same group. The goal is to flexibly determine reliability for the wheel. A case study is performed using Markov chain Monte Carlo methods and the following conclusions are drawn. First, a polynomial degradation path is a better choice for the studied locomotive wheels; second, under given operational conditions, the position of the locomotive wheel, i.e. on which bogie it is mounted, can influence its reliability; third, a piecewise constant hazard regression model can be used to undertake reliability studies; fourth, considering gamma frailties is useful for exploring the influence of unobserved covariates; and fifth, the wheels have a higher failure risk after running a threshold distance, a finding which could be applied in optimisation of maintenance activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.