Abstract

This paper proposes a new approach to study reliability of locomotive wheels with Bayesian framework, utilizing locomotive wheel degradation data sets that can be small or incomplete. In our study, a linear degradation path is assumed and locomotive wheels' installation positions are considered as covariates. A Markov Chain Monte Carlo (MCMC) computational method is also implemented. In the case study, data were collected from a Swedish railway company. This data includes, the diameter measurements of the locomotive wheels, total distances corresponding to their “time to maintenance”, and the wheels' bill of material (BOM) data. During this study, likelihood functions were constructed for exponential regression models, Weibull regression models, and lognormal regression models. The results show that the locomotive wheels' lifetimes are dependent on installation positions. For the studied locomotive wheels data, the Lognormal regression model is a better choice, because the model obtained the lowest Deviance Information Criterion (DIC) values. In addition, under current operation situation (e.g. topography) and current maintenance strategies (reprofiled, lubrication, etc.), the locomotive wheels installed in the second bogie have longer lifetimes than those installed in the first bogie; the wheels installed on the “back” axle have longer lifetimes than those on the “front” axle; and the right side wheels' lifetime is shorter than that for the left side under a given running situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.