Abstract

We study Bayesian quickest detection problems with sensor arrays. An underlying signal is assumed to gradually propagate through a network of several sensors, triggering a cascade of interdependent change-points. The aim of the decision maker is to centrally fuse all available information to find an optimal detection rule that minimizes Bayes risk. We develop a tractable continuous-time formulation of this problem focusing on the case of sensors collecting point process observations and monitoring the resulting changes in intensity and type of observed events. Our approach uses methods of nonlinear filtering and optimal stopping and lends itself to an efficient numerical scheme that combines particle filtering with a Monte Carlo–based approach to dynamic programming. The developed models and algorithms are illustrated with plenty of numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.