Abstract

We study the quickest change point detection for systems with multiple possible post-change models. A change point is the time instant at which the distribution of a random process changes. We consider the case that the post-change model is from a finite set of possible models. Under the Bayesian setting, the objective is to minimize the average detection delay (ADD), subject to upper bounds on the probability of false alarm (PFA). The proposed algorithm is a threshold-based sequential test. With asymptotic analysis, the analytical ADD of the proposed algorithm is expressed as closed-form functions of the PFA, prior probabilities of change points and models, and the Kullback-Leibler divergences among various models. The proposed algorithm is shown to be asymptotically optimum in terms of ADD when the PFA tends to zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.