Abstract
We apply the Bayesian quantile regression (BayesQR) model for binary response variables and the unsupervised learning methods to synthetic data (Stevens and Anderson-Cook, 2017a, 2017b), which is univariate data with a binary response of passing or failing for complex munitions generated to match age and usage rate found in US Department of Defense complex systems (Army and Navy). Instead of the generalised linear model (GLM) used in Stevens and Anderson-Cook (2017a), we propose to apply the BayesQR to predict a binary response of passing or failing for the Army and Navy data as well as the unsupervised learning methods. First, we want to find the best models for the Army and Navy through comparing statistical inference of BayesQR and GLMs and calculating their percentage correctly classified (PCC) which tests the accuracy of a prediction. The second method focuses on clustering using the k-means clustering and random forests based on the results of BayesQR. We compare models with different covariates to find the one that can best divide data into two groups: Army and Navy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Productivity and Quality Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.