Abstract

 The purpose of this study is to compare the ability of the Classical Quantile Regression method and the Bayesian Quantile Regression method in estimating models that contain autocorrelated error problems using simulation studies. In the quantile regression approach, the data response is divided into several pieces or quantiles conditions on indicator variables. Then, The parameter model is estimated for each selected quantiles. The parameters are estimated using conditional quantile functions obtained by minimizing absolute asymmetric errors. In the Bayesian quantile regression method, the data error is assumed to be asymmetric Laplace distribution. The Bayesian approach for quantile regression uses the Markov Chain Monte Carlo Method with the Gibbs sample algorithm to produce a converging posterior mean. The best method for estimating parameter is the method that produces the smallest absolute value of bias and the smallest confidence interval. This study resulted that the Bayesian Quantile method produces smaller absolute bias values and confidence intervals than the quantile regression method. These results proved that the Bayesian Quantile Regression method tends to produce better estimate values than the Quantile Regression method in the case of autocorrelation errors. 
 Keywords: Quantile Regression Method, Bayesian Quantile Regression Method, Confidence Interval, Autocorrelation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.