Abstract
Increasingly, many hospitals are attempting to provide more accurate information about Emergency Department (ED) wait time to their patients. Estimation of ED wait time usually depends on what is known about the patient and also the status of the ED at the time of presentation. We provide a model for estimating ED wait time for prospective low acuity patients accessing information online prior to arrival. Little is known about the prospective patient and their condition. We develop a Bayesian quantile regression approach to provide an estimated wait time range for prospective patients. Our proposed approach incorporates a priori information in government statistics and elicited expert opinion. This methodology is compared to frequentist quantile regression and Bayesian quantile regression with non-informative priors. The test set includes 1, 024 low acuity presentations, of which 457 (44%) are Category 3, 425 (41%) are Category 4 and 160 (15%) are Category 5. On the Huber loss metric, the proposed method performs best on the test data for both median and 90th percentile prediction compared to non-informative Bayesian quantile regression and frequentist quantile regression. We obtain a benefit in the estimation of model coefficients due to the value contributed by a priori information in the form of elicited expert guesses guided by government wait time statistics. The use of such informative priors offers a beneficial approach to ED wait time prediction with demonstrable potential to improve wait time quantile estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.