Abstract
Population genetic modeling can enhance Bayesian phylogenetic inference by providing a realistic prior on the distribution of branch lengths and times of common ancestry. The parameters of a population genetic model may also have intrinsic importance, and simultaneous estimation of a phylogeny and model parameters has enabled phylodynamic inference of population growth rates, reproduction numbers, and effective population size through time. Phylodynamic inference based on pathogen genetic sequence data has emerged as useful supplement to epidemic surveillance, however commonly-used mechanistic models that are typically fitted to non-genetic surveillance data are rarely fitted to pathogen genetic data due to a dearth of software tools, and the theory required to conduct such inference has been developed only recently. We present a framework for coalescent-based phylogenetic and phylodynamic inference which enables highly-flexible modeling of demographic and epidemiological processes. This approach builds upon previous structured coalescent approaches and includes enhancements for computational speed, accuracy, and stability. A flexible markup language is described for translating parametric demographic or epidemiological models into a structured coalescent model enabling simultaneous estimation of demographic or epidemiological parameters and time-scaled phylogenies. We demonstrate the utility of these approaches by fitting compartmental epidemiological models to Ebola virus and Influenza A virus sequence data, demonstrating how important features of these epidemics, such as the reproduction number and epidemic curves, can be gleaned from genetic data. These approaches are provided as an open-source package PhyDyn for the BEAST2 phylogenetics platform.
Highlights
Mechanistic models guided by expert knowledge can form an efficient prior on epidemic history when conducting phylodynamic inference with genetic data [1]
We address the gap in software tools for epidemic modeling and phylogenetic inference by developing a BEAST2 package, PhyDyn, which includes a highly-flexible markup language for defining compartmental infectious disease models in terms of ordinary differential equations
We model a single season of Influenza A virus (IAV) H3N2 and apply this model to 102 HA-1 sequences collected between 2004 and 2005 in New York state [24, 25]
Summary
Mechanistic models guided by expert knowledge can form an efficient prior on epidemic history when conducting phylodynamic inference with genetic data [1]. These packages mirror the functionality of MultiTypeTree but include approximations to reduce computational requirements, enabling estimation of time-invariant effective population sizes and migration rates between spatial demes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have