Abstract

Comprehensive two-dimensional liquid chromatography (LC×LC), is a powerful, emerging separation technique in analytical chemistry. However, as many instrumental parameters need to be tuned, the technique is troubled by lengthy method development. To speed up this process, we applied a Bayesian optimization algorithm. The algorithm can optimize LC×LC method parameters by maximizing a novel chromatographic response function based on the concept of connected components of a graph. The algorithm was benchmarked against a grid search (11,664 experiments) and a random search algorithm on the optimization of eight gradient parameters for four different samples of 50 compounds. The worst-case performance of the algorithm was investigated by repeating the optimization loop for 100 experiments with random starting experiments and seeds. Given an optimization budget of 100 experiments, the Bayesian optimization algorithm generally outperformed the random search and often improved upon the grid search. Moreover, the Bayesian optimization algorithm offered a considerably more sample-efficient alternative to grid searches, as it found similar optima to the grid search in far fewer experiments (a factor of 16–100 times less). This could likely be further improved by a more informed choice of the initialization experiments, which could be provided by the analyst’s experience or smarter selection procedures. The algorithm allows for expansion to other method parameters (e.g., temperature, flow rate, etc.) and unlocks closed-loop automated method development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call