Abstract

ABSTRACTWe consider the problem of flexible modeling of higher order Markov chains when an upper bound on the order of the chain is known but the true order and nature of the serial dependence are unknown. We propose Bayesian nonparametric methodology based on conditional tensor factorizations, which can characterize any transition probability with a specified maximal order. The methodology selects the important lags and captures higher order interactions among the lags, while also facilitating calculation of Bayes factors for a variety of hypotheses of interest. We design efficient Markov chain Monte Carlo algorithms for posterior computation, allowing for uncertainty in the set of important lags to be included and in the nature and order of the serial dependence. The methods are illustrated using simulation experiments and real world applications. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.