Abstract

BackgroundEstimating the genetic component of a complex phenotype is a complicated problem, mainly because there are many allele effects to estimate from a limited number of phenotypes. In spite of this difficulty, linear methods with variable selection have been able to give good predictions of additive effects of individuals. However, prediction of non-additive genetic effects is challenging with the usual prediction methods. In machine learning, non-additive relations between inputs can be modeled with neural networks. We developed a novel method (NetSparse) that uses Bayesian neural networks with variable selection for the prediction of genotypic values of individuals, including non-additive genetic effects.ResultsWe simulated several populations with different phenotypic models and compared NetSparse to genomic best linear unbiased prediction (GBLUP), BayesB, their dominance variants, and an additive by additive method. We found that when the number of QTL was relatively small (10 or 100), NetSparse had 2 to 28 percentage points higher accuracy than the reference methods. For scenarios that included dominance or epistatic effects, NetSparse had 0.0 to 3.9 percentage points higher accuracy for predicting phenotypes than the reference methods, except in scenarios with extreme overdominance, for which reference methods that explicitly model dominance had 6 percentage points higher accuracy than NetSparse.ConclusionsBayesian neural networks with variable selection are promising for prediction of the genetic component of complex traits in animal breeding, and their performance is robust across different genetic models. However, their large computational costs can hinder their use in practice.

Highlights

  • Estimating the genetic component of a complex phenotype is a complicated problem, mainly because there are many allele effects to estimate from a limited number of phenotypes

  • First, we considered the effect of sparsity on the prediction of genotypic values in the additive scenarios for all methods (Fig. 3)

  • In the scenario with 100 quantitative trait loci (QTL) ( S100 ), NetSparse had an increase in accuracy of 0.06 over the genomic best linear unbiased prediction (GBLUP)(-AD,ADAA) methods, of 0.02 over BayesB and 0.05 over BayesB-AD

Read more

Summary

Introduction

Estimating the genetic component of a complex phenotype is a complicated problem, mainly because there are many allele effects to estimate from a limited number of phenotypes In spite of this difficulty, linear methods with variable selection have been able to give good predictions of additive effects of individuals. Prediction methods may be optimized if they allow to model a proportion π of the total number of markers as irrelevant for phenotype prediction. Additive methods such as BayesB [2] and BayesCπ [3] allow for this variable selection of markers van Bergen et al Genet Sel Evol (2020) 52:26

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call