Abstract
Identifying parameters of computational models from experimental data, or model calibration, is fundamental for assessing and improving the predictability and reliability of computer simulations. In this work, we propose a method for Bayesian calibration of models that predict morphological patterns of diblock copolymer (Di-BCP) thin film self-assembly while accounting for various sources of uncertainties in pattern formation and data acquisition. This method extracts the azimuthally-averaged power spectrum (AAPS) of the top-down microscopy characterization of Di-BCP thin film patterns as summary statistics for Bayesian inference of model parameters via the pseudo-marginal method. We derive the analytical and approximate form of a conditional likelihood for the AAPS of image data. We demonstrate that AAPS-based image data reduction retains the mutual information, particularly on important length scales, between image data and model parameters while being relatively agnostic to the aleatoric uncertainties associated with the random long-range disorder of Di-BCP patterns. Additionally, we propose a phase-informed prior distribution for Bayesian model calibration. Furthermore, reducing image data to AAPS enables us to efficiently build surrogate models to accelerate the proposed Bayesian model calibration procedure. We present the formulation and training of two multi-layer perceptrons for approximating the parameter-to-spectrum map, which enables fast integrated likelihood evaluations. We validate the proposed Bayesian model calibration method through numerical examples, for which the neural network surrogate delivers a fivefold reduction of the number of model simulations performed for a single calibration task.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have