Abstract
We consider an autonomous agent operating in a stochastic, partially-observable, multiagent environment, that explicitly models the other agents as probabilistic deterministic finite-state controllers (PDFCs) in order to predict their actions. We assume that such models are not given to the agent, but instead must be learned from (possibly imperfect) observations of the other agents' behavior. The agent maintains a belief over the other agents' models, that is updated via Bayesian inference. To represent this belief we place a flexible stick-breaking distribution over PDFCs, that allows the posterior to concentrate around controllers whose size is not bounded and scales with the complexity of the observed data. Since this Bayesian inference task is not analytically tractable, we devise a Markov chain Monte Carlo algorithm to approximate the posterior distribution. The agent then embeds the result of this inference into its own decision making process using the interactive POMDP framework. We show that our learning algorithm can learn agent models that are behaviorally accurate for problems of varying complexity, and that the agent's performance increases as a result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.